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Abstract. In Explainable Al the prototypical part network (ProtoP-
Net) is a widely used approach due to its expert-level reasoning, find-
ing prototypical parts, and making final classification decisions based
on them. Despite ProtoPNet’s high classification accuracy, its unsta-
ble behavior and incorrect reasoning, especially on images with applied
rotation transformations, raise a crucial question: How many rotation
augmentations are necessary to ensure that the prediction result and the
model’s reasoning remain consistent? A new rotation equivariant solu-
tion called ReProtoPNet is proposed to address these issues. ReProtoP-
Net is a Group-equivariant Convolutional Neural Networks (G-CNN)
powered version of ProtoPNet, which enhances the network’s capacity
to handle rotations without increasing the number of parameters. Our
experiments show that ReProtoPNet can achieve consistent reasoning
across multiple rotations of the same image, with improved stability
in class probabilities compared to ProtoPNet. This paper details the
architecture of ReProtoPNet and the modifications made to incorpo-
rate G-CNNs. The performance of ReProtoPNet is evaluated on various
benchmark datasets, and its superior stability and accuracy are demon-
strated in classification tasks involving rotated images. Results indicate
that the proposed method retains the interpretability of ProtoPNet and
significantly enhances its robustness to rotation transformations. This
advancement has substantial implications for deploying explainable AI
models in real-world applications where image orientations vary, espe-
cially on medical datasets.
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1 Introduction

Artificial intelligence (AI) has appeared as a transformative force in the field
of medicine, revolutionizing various applications from diagnostics to treatment
planning [1]. Its ability to process vast amounts of data rapidly and accurately
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has made it a valuable tool for healthcare professionals, offering significant en-
hancements in decision-making processes [9]. In medical practice, Al’s impor-
tance is particularly evident in its ability to aid in complex decisions by analyz-
ing patterns in medical images, predicting disease progression, and personalizing
treatment plans. These capabilities have improved patient outcomes and allevi-
ated the burden on healthcare providers by enabling more efficient and informed
decision-making.

AT’s integration into medical applications is broad, including radiology, which
helps detect abnormalities in imaging, and pathology, which improves cancer
detection. Additionally, Al-driven tools assist doctors in cross-referencing symp-
toms, suggesting diagnoses, and recommending treatments based on vast datasets
that humans cannot process quickly. However, while Al offers these powerful
tools, its "black-box" nature —where the inner workings of the algorithms re-
main unclear— poses significant challenges in medical decision-making. Clini-
cians must understand how and why AI arrives at certain conclusions to trust
and effectively use these technologies in critical scenarios.

To bridge this gap, the development of explainable AI (XAI) has become a
crucial focus. XAl aims to create models that perform well and provide clear,
interpretable insights into their decision-making processes. In medicine, inter-
pretable models are precious as they allow doctors to understand the reasoning
behind Al-driven diagnoses and treatment suggestions, fostering greater confi-
dence in these tools [3]. By making AI’s decisions transparent, healthcare pro-
fessionals can validate the model’s conclusions, ensuring they align with clinical
expertise and patient-specific factors.

Oune notable example of an interpretable model is ProtoPNet [4], a prototype-
based neural network designed to make Al decision-making more transparent.
ProtoPNet operates by classifying images by comparing them with learned pro-
totypes—specific parts of images from known classes. For instance, in medical
imaging, ProtoPNet can identify X-ray regions that resemble a particular dis-
ease’s prototypical features. The model then bases its predictions on the degree
of similarity between the observed image regions and these prototypes. This ap-
proach, which mirrors how radiologists compare suspected abnormalities with
known pathological patterns, provides a level of interpretability that allows doc-
tors to understand the AI’s decision-making process.

Despite its advantages, ProtoPNet has its limitations. A significant challenge
arises in the model’s stability and consistency, particularly when images are
rotated during inference. When an input image is rotated, the corresponding
activation maps—used by the model to make predictions—do not remain stable,
leading to inconsistent predictions. This lack of rotation equivariance [5] can
undermine the reliability of Al-driven diagnostics, as even slight variations in
image orientation can result in different outputs, which is unacceptable in critical
medical contexts.

To address this issue, our research proposes a solution that integrates Group
Equivariant Convolutional Neural Networks (G-CNNs) [5], specifically Steerable-
CNNs [6], into ProtoPNet. G-CNNs are designed to maintain consistent feature
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extraction across different image transformations, such as rotations. By incor-
porating Steerable-CNNs, a specific type of G-CNN, our approach ensures that
the activation maps remain stable even when the input image is rotated. This
enhancement not only preserves the interpretability of ProtoPNet but also sig-
nificantly improves its reliability and robustness in clinical applications.

While ProtoPNet offers a promising approach to interpretable Al in medicine,
its limitations in handling image rotations necessitate further refinement. By
combining ProtoPNet with Steerable-CNNs, our research aims to overcome these
challenges, ensuring that AT tools in medicine are both interpretable and reliable,
ultimately supporting better decision-making and patient care.

2 Methods

2.1 ProtoPNet Architecture

The ProtoPNet’s architecture consists of the four following major parts: a back-
bone model (convolutional layers), prototype comparison, conversion to proto-
type similarity scores, and finally, an affine layer. These individual steps are
visualized in Fig. 1.
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Fig. 1. Simplified architecture overview of ProtoPNet.

In the first part, convolutional layers are separated into two distinct sections:
an easily replaceable backbone model and the dynamic add-on layers. The back-
bone might be any model as long as the spatial dimension of the latent space
remains sufficiently large. For example, a spatial dimension of 1x1 would sig-
nificantly deteriorate the interpretability, as no specific location of the highest
prototype similarity could be determined. The add-on layers are a group of 1x1
convolutional layers that serve as a connector between the backbone and the
ProtoPNet, allowing us a flexible configuration of the depth of the latent space,
i.e., the depth of the prototypes.

The second part, the prototype comparison, is computing the L2 distance
between the latent space and each prototype for every spatial location. This
operation operates similarly to a convolutional layer with the prototypes being
the kernels, just that it is not computing the scalar product of the kernel and
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the latent patch but the L2 norm of the difference between the two. This means
that we get a distance map for each prototype.

The next part is performing a min pool over the height and width of the
distance maps, computing the min distance for each prototype. This distance is
then converted into a similarity score, e.g., by taking the negative distance.

The final part is an affine layer, which is responsible for producing the final
class probabilities. The weights of this layer are initialized in such a way that the
reasoning of the network is rather "It looks like a duck; therefore, it is a duck"
than "It does not look like a pig; therefore, it is a duck" [4]. Also, to preserve the
weights of a similar structure during training, a particular loss term is added to
the overall loss function.

2.2 ReProtoPNet Architecture

Our architecture is closely related to that of ProtoPNet. The key differences are
the replacement of the convolutional layers by rotation equivariant convolutional
layers followed by a group pool operation, as can be seen in Fig. 2, and a further
restriction on the allowed prototype shapes. In the following, when we talk about
rotation equivariant convolutional layers, we specifically mean E(n)-equivariant
Steerable CNNs implemented in the escnn library [2, 11].
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Fig. 2. Simplified architecture overview of ReProtoPNet.

Convolutional and add-on layers in the first and second parts of the archi-
tecture, respectively, are replaced with their corresponding rotation equivariant
versions. Lastly, we add a group pool layer, which can be considered a max pool
over the finite symmetry group, to obtain the same latent space for the rotated
versions of an image, e.g. pl16 [2]. In theory, the output of these rotation equiv-
ariant convolutional layers is rotation equivariant such that Eq. 1 holds, where
x is the input image, r is any rotation, and f is the convolutional layers.

f(r(z)) = r(f(=)) (1)

When initializing ProtoPNet, the prototype shape (spatial height, width,
depth) must be defined. The prototype comparison takes place directly after
the group pooling, as seen in Fig. 2. To preserve the rotational equivariance,



Rotation Invariant Prototypes for Enhanced Interpretability 5

the spatial height and width of the prototype must be 1, such that a rotation
does not affect the resulting L2 distance. This does not pose a fundamental
limitation on the expressiveness of ProtoPNet since it aligns very well with the
parameter choice made in [4]. Therefore, we apply this constraint to the shape
of the prototype.

As outlined above, the rotational equivariance is preserved until the dis-
tance maps. The next step is a min pool over the spatial dimensions to achieve
rotational and translational invariance. This step outputs the smallest overall
distance of each prototype to the latent input image. After passing the min
distances through the similarity function, we have a rotation and translation
invariant similarity score for each prototype. The final class probabilities are,
therefore, also invariant to these operations.

2.3 Weight Down Similarities in Corners

Rotational equivariance does not hold outside of a particular circular image
patch. For this reason, we use escnn’s masking module to apply a smooth circular
mask to the input image, setting all values outside of the mask to zero. This
ensures that no corner information, which would be cut off when the image is
rotated, is used for the network’s decision-making. Although this helps a lot,
there will still be artifacts, i.e., parts that are not rotation equivariant, in the
output of the convolutional layers. These will negatively affect the rotational
invariance of the class probabilities. Therefore, we do not want prototypes to
focus on these regions. Hence, we suggest applying a similar mask to the distance
maps. By increasing the distances outside the mask, we weigh down the similarity
scores of these patches. Fig. 3 visualizes the final architecture.
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Fig. 3. Simplified architecture overview of ReProtoPNet with weighted down corners.

2.4 Datasets, Model and Implementation Details

MedMNIST [12] is a collection of biomedical image classification datasets com-
prising 18 different datasets. All datasets are standardized with multiple size
options, including 28, 64, 128, and 224x224 images. The BloodMNIST dataset
is used in all experiments with the size of 224x224 images unless stated oth-
erwise. The regular ProtoPNet is trained with the augmented dataset, which
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includes images rotated at 0, 90, 180, and 270 degrees. However, we do not use
any augmentation for the ReProtoPNet.

We used the C8SteerableCNN from the escnn [2] example model, designed for
45-degree rotational equivariance by leveraging the cyclic group Cg to enhance
robustness in tasks requiring rotational invariance. The input image is treated as
a scalar field corresponding to the trivial representation of C's. The model consists
of six convolutional blocks, each featuring equivariant convolutions that output
feature maps transforming under the regular representation of Cg. After each
block, batch normalization [7] and ReLU [8] activations are applied, with anti-
aliased average pooling performed after certain blocks to downsample the feature
maps. The final convolutional layers reduce the feature maps to 64 channels,
after which group pooling aggregates information across all rotations, effectively
removing the group dimension while retaining spatial information. The resulting
features are passed through fully connected layers for classification, producing
the model’s output. This architecture ensures that the network’s features are
robust to 45-degree rotations.

For the original ProtoPNet, all Steerable-CNN blocks are simply replaced
with their equivalent regular CNN blocks.

3 Results

In this section, we will present our key findings, which are organized according to
the following primary research questions: How do the models perform in terms of
accuracy? How stable is the new method compared to the original ProtoPNet?
How does the Weight Down Corner (WDC) method affect stability?

For the two models, we pre-defined 10 prototypes per class like in the original
ProtoPNet paper, but the accuracy results of various numbers of prototypes per
class are also shown in Fig. S1.

3.1 Performance Evaluation

Accuracy is a simple yet effective method to show the overall performance of
the models/methods for various tasks. In this work, we also shared the per-
formance of the ProtoPNet and the ReProtoPNet across different datasets, as
shown in Fig. 4. The baseline model shares the same architecture with the
C8SteerableCNN model but is converted to the equivalent CNN model, as we
mentioned previously. PP represents the ProtoPNet since it is an extension of
the backbone model. In three datasets, ReProtoPNet (Steerable CNN + PP)
does not compromise the accuracy much by gaining prediction stability across
any rotation, which we mentioned in section 4.3.
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Accuracy Comparison for Various Datasets
(Baseline Augmented, Steerable Non-Augmented)
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Fig. 4. Comparison of Accuracies across different MedMNIST datasets between Pro-
toPNet, and ReProtoPNet

3.2 Stability of Diagnosis With Respect to Rotation

It is essential to have stable and consistent results in machine learning, especially
in medical applications. A doctor must not misdiagnose a patient due to the
rotation of the input image, which is why they need explainable and interpretable
models. To estimate how stable and reliable our models are, we performed various
tests, two of which we present here.

Average Prediction per Class In the analysis presented in Fig. 5, we com-
pared ProtoPNet, ReProtoPNet, and ReProtoPNet-WDC regarding their aver-
age probability across all samples for each class as the input images were rotated.
As can be seen, ProtoPNet is inherently unstable, while ReProtoPNet and espe-
cially ReProtoPNet-WDC, by design, achieve much more consistent predictions.

—— ProtoPNet
Class 0 Class 1 Class 2 —— ReProtoPNet Class 3

90° 90° 90°  —— ReProtoPNetwDC ~ 90°
135° 45° 135° 45° 135° 45° 135° 45°
180° 0° 180° 0° 180° 0° 180° 0°
225° 315° 225° 315° 225° 315° 225° 315°
° © 270°
Class 4 Class 5 Class 6 Class 7
: g : ac
135° 45° 135° 45° 135° 45° 135° 45°
180° 0° 180° 0° 180° 0° 180° 0°
225° 315° 225° 315° 225° 315° 225° 315°
° © 270°
Fig. 5. Comparison of average probability over all samples for each ground truth class
and rotation between ProtoPNet, ReProtoPNet, and ReProtoPNet-WDC.
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Average Variance of Prototype Distances We compute the average vari-
ance of each prototype’s distance the following way. The normalized prototype

distance for prototype p, sample s, and rotation r is computed by st”;ﬁ, where
_ p

dsp is the mean distance over all rotations, and € is a small value such that very
small distances are not scaled too drastically. The average variance of prototype
distances over all samples for each prototype is then given by Eq. 2

1 V(e )

vary = g 3 Var(z50) 2)
s=1

By comparing these variances between ProtoPNet, ReProtoPNet, and ReProtoPNet-

WDC, we can see that ReProtoPNet-WDC achieves roughly 500 times smaller

variance in the prototype distances compared to the original ProtoPNet (see

Fig. S2 and Fig. S3).

We also measured the average variance of class probabilities for each class
for correctly classified samples (prediction is classified based on majority vote
over all rotations). We computed this variance in a manner similar to the one
described above. Our proposed architecture achieved a roughly 40 times smaller
variance (Fig. S4).

4 Discussion

In the original ProtoPNet, rotation augmentation is used to generalize the model
across different orientations. However, applying 16 rotations during training in-
creases computational costs by 16 times, as noted by Veeling et al. [10]. Despite
this, it does not ensure generalization during inference, as the model treats each
rotated image as a distinct sample, resulting in different activation maps for each
rotation, as shown in Fig. S5.

For the mask operation, the optimal size and smoothness (sigma) of the
weight-down mask are unclear, which may affect stability. Using large filters in
multiple convolutions can blur the latent space’s border region, shifting rota-
tion artifacts toward the center. For circular datasets, where key information is
centered, a weight-down mask can help eliminate edge artifacts, as seen in Blood-
MNIST. However, while this approach shows promise, it may only be effective for
specific datasets and could reduce interpretability for important features outside
the circular mask.

5 Conclusion

To sum up, stability and explainability are significant parts of medical applica-
tions for robust diagnosis. In this study, we present rotation-invariant prototypes
for interpretable models, specifically on ProtoPNet, to reduce prediction and
reasoning variance caused by rotation. As a result, the proposed architecture
achieved rotational invariance of diagnosis while preserving the explainability
(97.5% reduced variance). It makes the variance of the prototype distances more
than 500 times smaller (99.8% reduction).
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6 Supplementary Materials

Model Accuracy Comparison for Number of Prototypes for CNN and ReCNN
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Fig. S1. Accuracy comparison of ProtoPNet (Baseline -+ PP) and ReProtoPNet (Steer-
able CNN + PP) for different number of prototypes per class. P stands for the number
of Prototypes per class.

Average Prototype Variance

= ProtoPNet
= ReProtoPNet

Variance

Prototype

Fig. S2. Average variance of each prototype over all samples. Comparison between
ProtoPNet and ReProtoPNet.
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Average Prototype Variance
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Fig. S3. Average variance of each prototype over all samples. Comparison between
ReProtoPNet and ReProtoPNet-WDC.
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Fig. S4. Average variance of class probabilities for each class for correctly classified
samples. Shown for ProtoPNet (a) ReProtoPNet (b) and ReProtoPNet-WDC (c).

Fig. S5. Prototype distances of ProtoPNet (a — h) and ReProtoPNet (i — p) for various
rotations of the input image (45° steps from 0° to 315° ).




