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Abstract. Ensuring the privacy and security of machine learning tools,
particularly concerning the confidentiality of their training data, is of
most importance. Current research reveals the potential for reconstruct-
ing training data from trained neural networks, raising concerns about
inversion attacks on sensitive datasets, including genetic data. This paper
contributes by exploring the applicability of novel gray-box approaches
for reconstructing training data from trained cancer predictors. We present
a pipeline designed for inversion attacks on trained cancer predictors,
demonstrating that reconstructability enhances with increasing spatial
correlation, as observed in medical images rather than genetic data.
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1 Introduction

With rapid advances in machine learning and the increasing availability of data,
privacy and security concerns have emerged as significant challenges. One such
concern are model inversion attacks, a class of privacy violations in which at-
tackers attempt to reconstruct sensitive training data from the parameters of a
trained model. While model inversion attacks have been extensively studied in
areas such as natural language processing and image recognition, their impact
in the field of genetic data has been relatively understudied [4].

In this article, we test the privacy of genetic machine learning models, focus-
ing particularly on model inversion attacks. Genetic data is highly personal and
sensitive information, which holds potential for medical research, diagnosis, and
personalized treatments. However, the utilization of machine learning models
on this data introduces novel privacy risks, raising critical questions about the
security of individuals’ genetic information.

2 Related Work

Reconstructing Training Data: The association of overparameterized neural
networks, with associative memory capabilities, as explored by Radhakrishnan et
al. [6], sheds light on the inherent memorization properties of such networks. This
work suggests that overparameterized auto-encoders can store training samples
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as attractors, offering a theoretical foundation for understanding the memoriza-
tion and retrieval mechanisms in neural networks. The feasibility of reconstruct-
ing training data from model gradients, as presented by Wang et al., introduces
a provable inversion attack method that poses severe privacy threats, particu-
larly in learning scenarios. Their study provides a mathematical foundation for
understanding the conditions under which training data can be reconstructed
from gradients [7]. Wang et al. further explore model inversion attacks across
multiple models, proposing an ensemble inversion technique that enhances the
quality of reconstructed training data [8].

Building on the mathematical foundations laid out by Lyu and Li [2] and Ji
and Telgarsky [1], Haim et al. demonstrated that a significant portion of training
data could be reconstructed from just the parameters of a trained neural network
classifier, leveraging the implicit bias in training neural networks with gradient-
based methods [9]. The mathematical foundation assumes a homogenous ReLU
network which is trained using gradient flow for binary classification. If at some
point the loss function is close to zero, then the gradient flow converges in direc-
tion to a first-order stationary point (KKT point) of the optimization problem.
This means, that there is an implicit bias of the gradient flow towards such KKT
points. The reconstruction hence is a nonconvex optimization method to find the
training data and coefficients that fulfill stationary and dual feasibility conditions
and minimize the reconstruction loss. Further advancing this study, Buzaglo et
al. showed that reconstructing training samples from multiclass neural networks
is feasible, with even higher quality than binary classification reconstructions
[10].

Our work builds upon these foundations, employing the reconstruction scheme
from Haim et al.[9] to genetic data, thus navigating the novel terrain of high-
dimensional data reconstruction with just a gray-box access to the model, mean-
ing that we only have access to the model’s weights and not the training proce-
dure, such as the gradients during training. This reconstructionability is highly
reliant on the performance of the prediction model, in our case trained on genetic
data.

Cancer Detection using Genetic Data: In the area of cancer detection and
classification using gene expression data, numerous innovative methods have
been employed to address the challenges posed by high dimensionality and com-
plexity of the data.

Danaee et al. employ a Stacked Denoising Autoencoder (SDAE) as well as
differentially expressed genes (DEG) to extract meaningful features from gene
expression data, highlighting the performance of subsequently trained cancer
predictors [11]. Khan et al. introduce a transformer-based model that leverages
the self-attention mechanism, offering a promising approach for classifying can-
cer subtypes without preliminary feature selection [14]. Rukhsar et al. show the
application of Convolutional Neural Networks (CNNs) after converting RNA-Seq
data into 2D images showcasing deep learning’s effectiveness in classifying mul-
tiple cancer types [13]. Alharbi et al. provide a thorough overview of machine
learning techniques, emphasizing the shift towards deep learning for its abil-
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ity to discern distinctive gene patterns relevant to cancer classification [12]. At
last, Khalsan et al. combine fuzzy logic with feature selection to enhance can-
cer classification, significantly improving accuracy by effectively reducing the
dimensionality of gene expression data [15].

Our approach draws on these advancements, particularly the dimensionality
reduction techniques from the [11], to enhance the accuracy and efficiency of
classifying samples while enabling the reconstruction of genetic data.

3 Experiments

MedMNIST Data As the previous work from Haim et al. [9] shows the ef-
fectiveness of inversion attacks using a gray-box approach on images from the
CIFAR-10 and MNIST dataset, we initially reproduced their pipeline for medical
images using the MedMNIST dataset proposed by Yang et al. [3]. We hereby
trained a classifier to differentiate between breast cancer (BreastMNIST) and or-
gan images (OrganCMNIST) and aimed at reconstructing the training images.

Genetic Data Gene expression values indicate the frequency at which the gene
is synthesized in that sample. It can be measured with RNA sequencing, which
is a technique that involves isolating and reading the RNA inside cells. Gene
expression values carry important information because changes in the levels of
gene expression are associated with the development and progression of diseases,
including cancer. For instance, the over or under-expression of certain genes
can indicate the presence of tumor cells and their characteristics, making gene
expression values valuable for cancer classification and diagnosis [11].

Building up on the work of Danaee et al. [11], our dataset originates from the
Genomic Data Commons (GDC) Data Portal [16], specifically from the TCGA-
BRCA (The Cancer Genome Atlas Breast Invasive Carcinoma) project. This
dataset contains gene expression values for 60.660 different genes across 282
healthy and 1.211 cancer samples. The gene expression values in our dataset have
been normalized across all samples to ensure comparability and are quantified
using TPM (Transcripts Per Million) unstranded values. TPM is a normalization
method for RNA-seq data that accounts for gene length and sequencing depth,
allowing for the comparison of gene expression levels within and across samples.
We utilize undersampling to address the issue of class imbalance between can-
cer and healthy patients. This approach aligns with findings from Haim et al.
[9], suggesting that using a smaller dataset for training a neural network can
lead to more effective inversion attacks. The resulting dataset is organized in a
tabular format, where each row corresponds to one sample (patient), and each
column represents the gene expression value for a specific gene. We trained neu-
ral networks to differentiate between cancer and healthy patients and aimed at
reconstructing the training data.

Experimental Setup We aimed to demonstrate the reconstructablity of the
medical images and genetic data from trained neural networks using the gray
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box approach proposed by Haim et al. [9]. Most importantly, we do not assume
any knowledge about the internal configuration of the model such as the gra-
dients of the weights. As the medical images from MedMNIST have the same
dimensionality as the CIFAR-10 and MNIST datasets, we were able to apply the
pipeline proposed by Haim et al. directly.

Given the high-dimensional nature of the genetic data (60.660 features), we
applied several dimensionality reduction techniques to extract meaningful infor-
mation without losing significant data. For this we utilized the dimensionality
reduction methods proposed by Danaee et al. [11]: SDAE, DEG, Principal Com-
ponent Analysis (PCA), Kernel PCA (KPCA). These methods reduce the feature
space from 60.660 to 784 features, subsequently using the most important fea-
tures to reduce complexity for classification and reconstruction while preserving
the essence of the original high-dimensional data.

After training a cancer predictor to differentiate between cancer and healthy
patients using the transformed training data, the approach by Haim et al. is used
to reconstruct the input data. The reconstructions are compared to the training
data to quantify the effectiveness of the inversion attack.

Fig. 1. Setup for Reconstructing Genetic Data from Trained Cancer Predictors

4 Results

4.1 MedMNIST

Using MedMNIST data of equivalent dimensionality to the CIFAR-10 and MNIST
datasets used by Haim et al. [9], our goal was to gather insights into the appli-
cability of the reconstruction process for medical data. For our experiments, we
trained a classifier to differentiate between breast cancer (BreastMNIST) and or-
gan images (OrganCMNIST) and performed an inversion attack on the trained
model. When visually analyzing the reconstructions, it becomes apparent that
the breast cancer data was reconstructed to resemble the mean of the dataset,
whereas the reconstructions of the organs retain their semantic meaning. This
observation hints at the significance of spatial correlation for the reconstruction
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process. Additionally, our investigation of other MedMNIST classifiers revealed
that datasets exhibiting high inter-class variance provided more successful re-
construction results.

Fig. 2. Reconstructed images and their nearest neighbour out of the training data
calculated based on L2 distance. Classifier trained to differentiate between breast cancer
(BreastMNIST) and organ images (OrganCMNIST).

Furthermore, these experiments revealed that while the reconstruction pro-
cess exhibits a noisy optimization under L2 distance evaluation, it showed a
more stable optimization when evaluated using the structural dissimilarity met-
ric DSSIM (see figure 3). This further indicates that reconstructability might be
linked to spatial correlation within the training data.

DSSIM L2

Fig. 3. Development of DSSIM and L2 distance between reconstructions and their
closest training data over various reconstruction epochs.

4.2 Genetic Data

After successfully demonstrating the reconstructability of medical images from
trained classifiers, we moved on to genetic data. We hereby trained a classifier
to differentiate between cancer and healthy patients using gene expression data
after dimensionality reduction as an input. We employed different patient selec-
tion strategies to investigate whether increasing the inter or intra-class variance
(measured with the euclidean distance) increases the performance of the clas-
sifier. This is important as Haim et al. [9] showed that the lower the loss of
the model the higher the reconstructability. Our result was that increasing the
inter-class variance by selecting the most dissimilar pairs of patients between
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cancer and healthy samples leads to the models with lower training and test
loss. The best reconstruction was generated from a classifier trained on the most
dissimilar pairs of patients where the features have been reduced using PCA.
The train error of this model was 0.019 and the test error 0.408. The mean ab-
solute difference between the reconstructions and their nearest neighbour over
all reconstructions was 0.85± 0.00 over all genetic features. While this was the
best reconstruction we achieved, the reconstruction quality is still poor, as the
standardized training data takes on values between [0, 1].

To investigate whether the classifiers performance is limited by the constrains
set by the mathematical assumptions, we trained a simple ResNet18 architecture
to differentiate between cancer and healthy patients (see table 1). Using this
approach, the highest test accuracy was 0.9667 compared to 0.592. Hence, we
showed that the performance of the model is limited by the constrains posed by
Haim et al. on the gray-box inversion attack.

Reduction DEG DEG DEG DEG PCA PCA

Patient Selection Random Dissimilar Random Dissimilar Random Dissimilar

Test Accuracy 63.33 93.33 55.00 96.67 73.33 90.00

Table 1. ResNET18 test accuracy values across experiments with different setups.
Selecting dissimilar patients resulted well compared to random selection with all com-
binations of parameters. The best result was achieved with using DEG.

4.3 Spatial Correlation Experiments

The results of the previous work and experiments with the MedMNIST datasets
showed higher reconstruction quality for images compared to genetic data. One
hypothesis for this notable difference is that spatial correlation within the train-
ing data, as observed in images, enhances the reconstructability. Spatial correla-
tion refers to the degree to which each pixel’s value is influenced by its neighbor-
ing pixels. Images often exhibit high spatial correlations, as patterns or clusters,
often referred to as blobs, can be observed. Conversely, low spatial correlation is
characterized by the independent distribution of pixel values, lacking observable
patterns. This characteristic is often observed in tabular data, such as genetic
information.

To test our hypothesis we investigated the relationship between the recon-
struction error and spatial correlation for artificially generated images with vary-
ing degrees of spatial correlation. Therefore, we designed a series of experiments
with two classes of images: One control group and one experimental group each
consisting of grids with dimensionalities of 28x28 pixels. The control group served
as the baseline with low spatial correlation with 100 randomly placed black pix-
els. The experimental group is designed to exhibit varying degrees of spatial
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correlation, achieved through the formation of blobs. This class initially fea-
tured isolated black pixels to represent low spatial correlation. Progressively,
we increase the adjacency of black pixels in subsequent experiments, forming
larger blobs to symbolize higher spatial correlation. The total black pixel count
remains consistent throughout all experiments to eliminate bias related to pixel
density. This methodological decision ensured that any observed differences in
reconstruction quality could be attributed to the degree of spatial correlation.

Fig. 4. This table presents the experimental setup and corresponding qualitative and
quantitative reconstruction results where the blobs in the experimental group are gen-
erated via a random walk.

Fig. 5. This table presents the experimental setup and corresponding qualitative and
quantitative reconstruction results where the blobs in the experimental group are gen-
erated using rectangular shapes.
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Fig. 6. Scatter plot demonstrating the inverse relationship between blob size and re-
construction error in experiments with rectangular, regular-shaped blobs as samples
for Class 2. As the blob size increases, a consistent decrease in reconstruction error is
observed.

We employed two methods for creating these blobs in the experimental group:
A random walk method for irregularly shaped blobs (see figure 4) and rectan-
gular, more regular-shaped clusters (see figure 5). This variation allowed us to
explore how different patterns of spatial correlation affect reconstruction quality.

The results for the experiments are the same for both blob generation meth-
ods: With increasing spatial correlation, the reconstruction error decreases. This
linear relationship is further visually represented in figure 6, where the recon-
struction error is plotted against the blob size. These findings underscore the
importance of spatial correlation in the context of reconstructing training data
from trained neural networks using the proposed gray-box approach. Conversely,
they underscore the challenge of reconstructing genetic data, which typically
lacks structural dependency: The absence of spatial correlation in such datasets
may prevent comparable reconstruction quality using the proposed gray-box ap-
proach.

5 Conclusion

In this paper, we investigated the applicability of an inversion attack of binary
classifiers while only assuming a gray-box access to the model. When using med-
ical images as training data, results comparable to the current state-of-the-art
proposed by Haim et al. [9] are achieved. When training a cancer predictor on ge-
netic data in a tabular format, the same reconstruction quality can not be repro-
duced. We showed that complying with the constraints set out for the gray-box
reconstructability limits the performance of the trained cancer predictors and
subsequently the inversion attack. Using a simple ResNet architecture improved
the quality of the classifier, but no further gray-box attack on the training data
is possible due to the violation of the mathematical constraints. Using experi-
mental data we showed that reconstruction quality is enhanced with increasing
spatial correlation, hence giving reason for the poor reconstruction quality of the
tabular genetic data.
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