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Warren and Brandeis (1890):

Privacy is a right of individuals to be protected from the
unsolicited distribution of information regarding their private life,
particularly via publications.

Legally (Non-Formal) Critique
13 U.S.C. §9. Too strict — prohibits the sharing of any
Prohibits any publication whereby the data furnished aggregate statistics!"

by. . .[an] individual. . .can be identified

HIPAA Privacy Rule Too loose — de-identification is known to
Permits the disclosure of health information that has be faultyl?!

been de-identified (removal of information from a

list of 18 identifiers)

[1] Kifer, Daniel, and Ashwin Machanavajjhala. "No free lunch in data privacy." Proceedings of the 2011 ACM SIGMOD International Conference on Management of
data. 2011.

[2] Benitez, Kathleen, and Bradley Malin. "Evaluating re-identification risks with respect to the HIPAA privacy rule." Journal of the American Medical Informatics
Association 17.2 (2010): 169-177.



Society separates into three categories with respect to their privacy via
self-assessment (Westin Studies 1978 — 2004)

Introduction

Pri ,
S Fundamentalist
~50% Pragmatist
ivacy vs. Fairness ~40%
DP as a Tool
Individual DP Uncg?gf/:ned
Results
* Protective of their privacy  Weight the pros and cons * Expect benefits to outweigh
Ingoing Research * Individuals should be « Evaluate protection and risk
proactive trust
S  Support stronger laws

P. Kumaraguru and L. F. Cranor, ‘Privacy Indexes: A Survey of Westin's Studies’
A. Woodruff, V. Pihur, S. Consolvo, L. Schmidt, L. Brandimarte, and A. Acquisti, ‘Would a privacy fundamentalist sell their DNA for $1000... if nothing bad happened
as a result? The Westin categories, behavioral intentions, and consequences’.
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Woodruff, V. Pihur, S. Consolvo, L. Schmidt, L. Brandimarte, and A. Acquisti, ‘Would a privacy fundamentalist sell their DNA for $1000... if nothing bad happened as
aresult? The Westin categories, behavioral intentions, and consequences’.

Cynthia E Schairer, Cynthia Cheung, Caryn Kseniya Rubanovich, Mildred Cho, Lorrie Faith Cranor, Cinnamon S Bloss, Disposition toward privacy and information
disclosure in the context of emerging health technologies, Journal of the American Medical Informatics Association, Volume 26, Issue 7, July 2019,
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Perceived vulnerabilities transform due to:
* technological developments
* changes in socioeconomic
conventions and traditions
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Taylor, Humphrey. (2003). Most People Are "Privacy Pragmatists" Who, While Concerned about Privacy, Will Sometimes Trade It Off for Other Benefits.
Ghosh, Arpita, and Aaron Roth. "Selling privacy at auction.” Proceedings of the 12th ACM conference on Electronic commerce. 2011.
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Taylor, Humphrey. (2003). Most People Are "Privacy Pragmatists" Who, While Concerned about Privacy, Will Sometimes Trade It Off for Other Benefits.
Ghosh, Arpita, and Aaron Roth. "Selling privacy at auction.” Proceedings of the 12th ACM conference on Electronic commerce. 2011.

[1] Taylor, David G., Donna F. Davis, and Ravi Jillapalli. "Privacy concern and online personalization: The moderating effects of information control and
compensation.” Electronic commerce research 9 (2009): 203-223.
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Introduction

Al systems should be equitable across all demographic groups [
Privacy

> “Nobody should suffer worse or accuracy in ML solely due to them belonging

Privacy vs. Fairness & SpeCIfIC group

Diasa fool Improving fairness to benefit one group should not hurt any other group [2-3
e O > “Lowering predictive accuracy for one group because of the presence of
another is also a fairness issue.
Results

Sensitive attributes are essential for many Al applications [4]
)ngoing Research

Discussion

[1] Yang, Y., Zhang, H., Gichoya, J.W. et a/. The limits of fair medical imaging Al in real-world generalization. Nature Medicine (2024)

[2] Ghassemi, M., Guseyv, A. Limiting bias in Al models for improved and equitable cancer care. Nature Reviews Cancer (2024)

[3] Suriyakumar, Vinith M., Marzyeh Ghassemi, and Berk Ustun. "When personalization harms: Reconsidering the use of group attributes in prediction." arXiv preprint arXiv:2206.02058 (2022)
[4] Taylor S, Jaques N, Nosakhare E, Sano A, Picard R. Personalized Multitask Learning for Predicting Tomorrow's Mood, Stress, and Health. IEEE Trans Affect Comput. (2020)
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= : Privacy in machine learning refers to the Fairness in machine learning refers to
rivacy vs. Fairness
the design and deployment of models
DP as a Tool during the training and deployment of that ensure equitable treatment of all
models, ensuring that personal individuals or groups, avoiding biases
Individual DP information is not exposed or inferred and discrimination in predictions or
from the model's outputs. outcomes.
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RESUlts Privacy concerns the training data > Fairness concerns the output data
Privacy concerns a limited group of 2 Fairness concerns an unlimited group of
)ngoing Research people people
Privacy is a data usage property > Fairness is a model property
Discussion Privacy requirement is a personal 2 Fairness requirement is a societal

property (it can be compensated for) property
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Decision Making with Differential Privacy under a Fairness Lens
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Abstract

Many agencies release datasets and statistics about
groups of individuals that are used as input to a
number of critical decision processes. To con-
form with privacy and confidentiality requirements,
these agencies are often required to release privacy-
preserving versions of the data. This paper studies
the release of differentially private datasets and an-
alyzes their impact on some critical resource allo-
cation tasks under a fairness perspective. The paper
shows that, when the decisions take as input differ-
entially private data, the noise added to achieve pri-
vacy disproportionately impacts some groups over
others. The paper analyzes the reasons for these
disproportionate impacts and proposes guidelines

Although DP provides strong privacy guarantees, it may in-
duce biases and fairness issues in downstream decision pro-
cesses, as shown empirically in [Pujol er al., 2020]. Since at
least $675 billion are being allocated based on U.S. census
data, the use of differential privacy without a proper under-
standing of these biases and fairness issues may adversely
affect the health, well-being, and sense of belonging of many
individuals. Indeed, the allotment of federal funds, appor-
tionment of congressional seats, and distribution of vaccines
should ideally be fair and unbiased. Similar issues arise in
several other areas including election, energy, and food poli-
cies. The problem is further exacerbated by the recent recog-
nition that commonly adopted DP mechanisms for data re-
lease may introduce unexpected biases on their own, indepen-
dently of a downstream decision process [Zhu et al., 2021].

DP introduces substantial bias in

allotment problems due to the stronger

perturbation of smaller values than
larger values due to the noise addition
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fairness postprocessing & DP oracle

Abstract regulations often restrict the use of “sensitive” or protected I

ReSu |t S Motivated by settings in which predictive models attributes in algorithmic decision-making. U.S. law pre- ea rn e r o n t a b u I a d

may be required to be non-discriminatory with re- vents the use of race in the development or deployment r ata
spect to certain attributes (such as race), but even of consumer lending or credit scoring models, and recent
collecting the sensitive attribute may be forbidden provisions in the E.U. General Data Protection Regulation
or restricted, we initiate the study of fair learn- (GDPR) restrict or prevent even the collection of racial data

) . ing under the constraint of differential privacy. for consumers. These two developments — the demand for

ng0| ng Rese arc h Our first algorithm is a private implememaﬁon non-discriminatory algorithms and models on the one hand,
of the equalized odds post—processing approach and the restriction on the collection or us¢ of protected at-
of (Hardt et al., 2016). This algorithm is appeal- tributes on the other — present technical conundrums, since
ingly simple, but must be able to use protected the most straightforward methods for ensuring fairness gen-
group membership explicitly at test time, which erally require knowing or using the attribute being protected.
D. . can be viewed as a form of “disparate treatment”. It seems difficult to guarantee that a trained model is not
ISCUSSION Our second algorithm is a differentially private discriminating against (say) a racial group if we cannot even

version of the oracle-efficient in-processing ap- identify members of that group in the data.

proach of (Agarwal et al., 2018) which is more

complex but need not have access 10 protected A recent line of work (Veale & Binns, 2017; Kilbertus et al.,
group membership at tes time. We identify new 2018) made these cogent observations, and proposed an
(radeoffs between fairne ccuracy, and privacy interesting solution employing the cryptographic tool of se-
that emerge only when requiring all three proper- cure multiparty computation (commonly abbreviated MPC).
ties, and show that these tradeoffs can be milder if In this model, we imagine a commercial entity with ac-
group membership may be used at test time. We cess to consumer data that excludes race, but this entity
conclude with a brief experimemal evaluation. would like to build a predictive model for, say, commer-
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Boenisch, Franziska, et al. "Have it your way: Individualized Privacy Assignment for DP-SGD." Advances in Neural Information Processing Systems 36 (2024).
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Require: Per-group target privacy budgets {¢,, ..., €, },
target 4, Iterations I, number of total data points N,
per-privacy group number of data points {|G,|, ..., |G, |}-

Init Usample: Usample « getNOise(El) 61 q, I)
Init {q4, ...,qp} where forp € [P]
qp — getsampleRate(Ep, 5, Gsample; I)

. 1
While g # NZ£:1| Gy|qyp:
Osample < SiOsample with s; <1
dp < getSampleRate(ep, 0, USampze;I) Vp € [P]
OUtPUt: Usample' {(h: L Qp}

Boenisch, Franziska, et al. "Have it your way: Individualized Privacy Assignment for DP-SGD." Advances in Neural Information Processing Systems 36 (2024).
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Karkkainen, K., & Joo, J. (2021). FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1548-1558).
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East Asian
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Indian
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all e=5 & ME £ =100
all e=5 & ME £ = 1000
Baseline: Non-private

Southeast Asian

Baseline: all e =5
alle=5 & SEA €=20
alle=5&SEAe=40
alle=5 & SEA £ =100
alle=5 & SEA £ = 1000
Baseline: Non-private

White

Baseline: alle=5
alle=5&WHe=20
alle=5&WHe=40
alle=5&WH e=100
alle=5 & WH £ =1000
Baseline: Non-private
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Baseline: all e=5

all e =5 & 10% highest infl. BL £ =100
all e =5 & 25% highest infl. BL e = 100
all e=5 & 50% highest infl. BL e = 100
all e =5 & 75% highest infl. BL £ = 100
all e=5 & 100% of BL € =100
Baseline: Non-private

Test Accuracy

Baseline: all e=5

all e=5 & 10% lowest infl. BL £ =100
all e=5 & 25% lowest infl. BL £ =100
all e=5 & 50% lowest infl. BL e =100
all e=5 & 75% lowest infl. BL £ =100
alle=5 & 100% of BL £ =100
Baseline: Non-private
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Baseline: all e=5

all e =5 & 10% highest infl. BL £ =100
all e =5 & 25% highest infl. BL e = 100
all e=5 & 50% highest infl. BL e = 100
all e =5 & 75% highest infl. BL £ = 100
all e=5 & 100% of BL € =100
Baseline: Non-private

Free Lunch:
Higher Accuracy,

Less overall privacy loss

Test Accuracy

Baseline: all e=5

all e=5 & 10% lowest infl. BL £ =100
all e=5 & 25% lowest infl. BL £ =100
all e=5 & 50% lowest infl. BL e =100
all e=5 & 75% lowest infl. BL £ =100
alle=5 & 100% of BL £ =100
Baseline: Non-private
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Introduction
Investigate the effect of the intervention on
groups of:

Py , : .
rivacy 2 Higher variance in data

Problems:

>

Finding a setting where these have a
substantial effect

2> Poor data quality 2 Finding a setting that allows to compare the
ivacy vs. Fairness 2 Lack of data intervention on a dataset with the three
different corruptions
DP as a Tool
Problems:
el DF 2> There is no good group correlation metric
naiviaua . A s g
@ | Predicting the inter-group correlative behaviour 2 A.vera‘\‘glng sample-wise cross-influence metrics
yield “group-influences” magnitues smaller (i.e.,
Results close to zero)
Ongoing Research ' o '
Increasing group-specific privacy budget Problems:

Discussion | =M However, for many contributors, the true risk may

10100101 | pe far smaller
Evaluate the change in risk using MIA

increases their theoretical upper bound on the risk None ©



Thank you!

Got further questions? Let’s connect: johannes.kaiser@tum.de
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