

Differential Privacy as a Fairness Intervention

Johannes Kaiser

Technical University of Munich

Munich University Hospital "Rechts der Isar"

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Johannes Kaiser

- PhD Student since May 2023
- Affiliated with Technical University of Munich & Hospital Clinic
- Supervised by Daniel Rückert and George Kaissis
- Research Interests: Everything that sparks joy (interactions of ai an humans, and theory)

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

Warren and Brandeis (1890):

Privacy is a right of individuals to be protected from the unsolicited distribution of information regarding their private life, particularly via publications.

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Legally (Non-Formal)

13 U.S.C. §9.

Prohibits any publication whereby the data furnished by...[an] individual...can be identified

HIPAA Privacy Rule Permits the disclosure of health information that has been de-identified (removal of information from a list of 18 identifiers) Critique

Too strict – prohibits the sharing of any aggregate statistics^[1]

Too loose – de-identification is known to be faulty^[2]

^[1] Kifer, Daniel, and Ashwin Machanavajjhala. "No free lunch in data privacy." Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. 2011.

^[2] Benitez, Kathleen, and Bradley Malin. "Evaluating re-identification risks with respect to the HIPAA privacy rule." Journal of the American Medical Informatics Association 17.2 (2010): 169-177.

Society separates into three categories with respect to their privacy via self-assessment (Westin Studies 1978 – 2004)

Introduction

Privacy

ivacy vs. Fairness

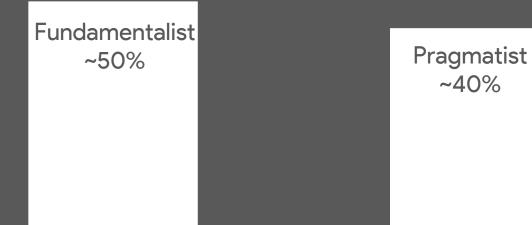
DP as a Tool

Individual DP

Results

Ongoing Research

Discussion



- Protective of their privacy
- Individuals should be proactive
- Support stronger laws

- Weight the pros and cons
- Evaluate protection and trust

Expect benefits to outweigh risk

Unconcerned

~10%

Privacy

ivacy vs. Fairness

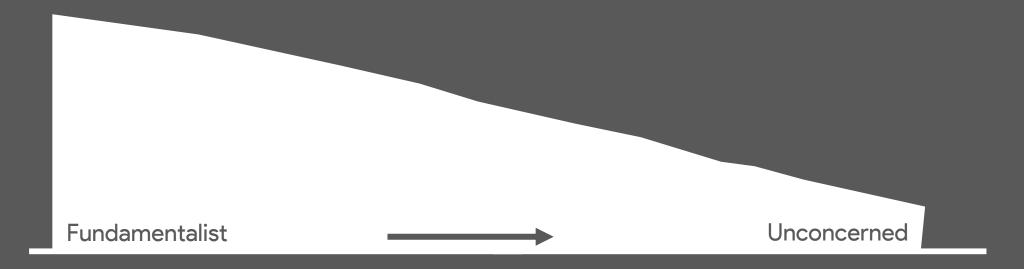
DP as a Tool

Individual DP

Results

Ongoing Research

Discussion



Privacy Segmentation is difficult

- Weigh the potential pros and cons
- Evaluate protection and trust
- Privacy perception is context-specific
- Influenced by cost-benefit, morals, responsibility to share
- Self-assessment fails (knowledge vs. motivation)

Woodruff, V. Pihur, S. Consolvo, L. Schmidt, L. Brandimarte, and A. Acquisti, 'Would a privacy fundamentalist sell their DNA for \$1000... if nothing bad happened as a result? The Westin categories, behavioral intentions, and consequences'.

Cynthia E Schairer, Cynthia Cheung, Caryn Kseniya Rubanovich, Mildred Cho, Lorrie Faith Cranor, Cinnamon S Bloss, Disposition toward privacy and information disclosure in the context of emerging health technologies, Journal of the American Medical Informatics Association, Volume 26, Issue 7, July 2019,

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

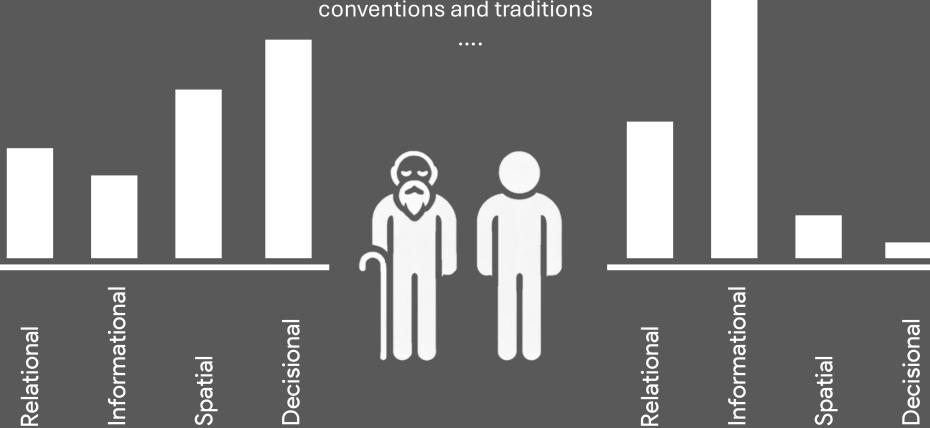
Results

Ingoing Research

Perceived vulnerabilities transform due to:

technological developments

 changes in socioeconomic conventions and traditions



Privacy perception is a personal property
Strongly context dependent

Qualitatively from:

W. M. P. Steijn and A. Vedder, 'Privacy under Construction: A Developmental Perspective on Privacy Perception', Science, Technology, & Human Values, vol. 40, no. 4, pp. 615–637, Jul. 2015

Introduction

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

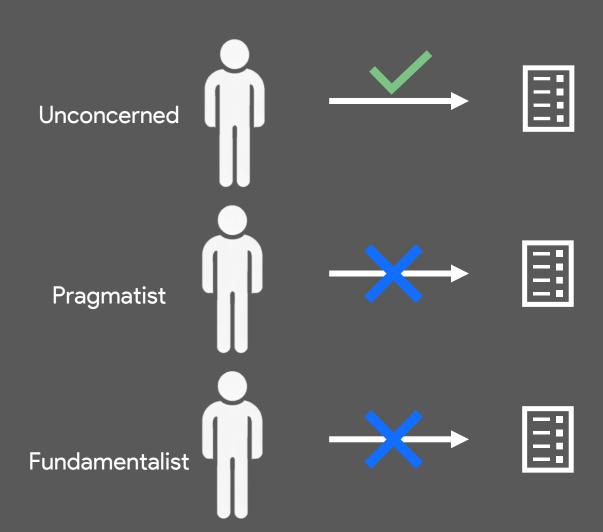
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

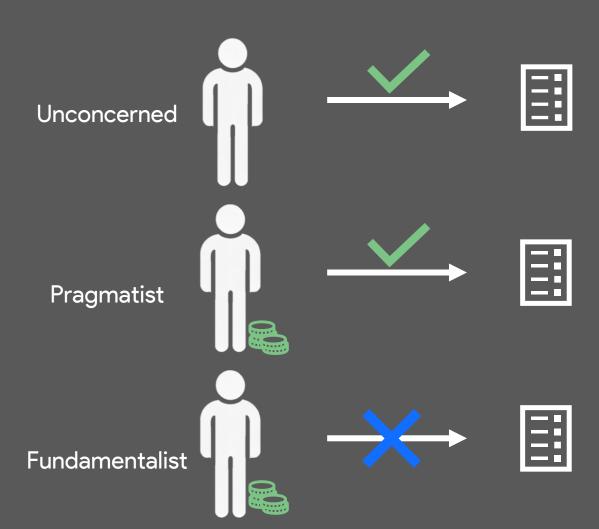
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

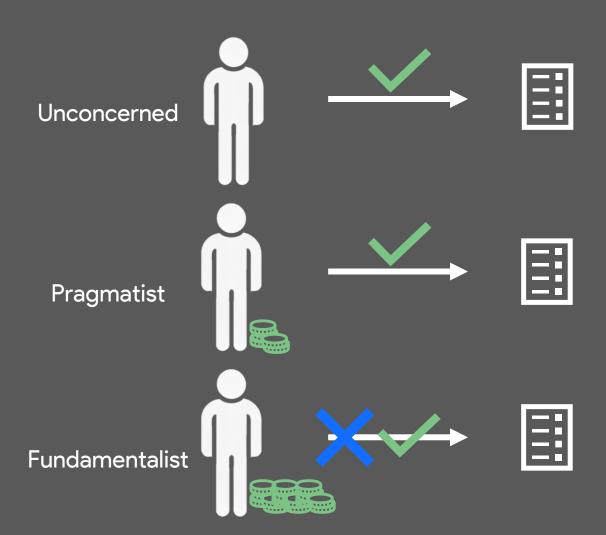
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

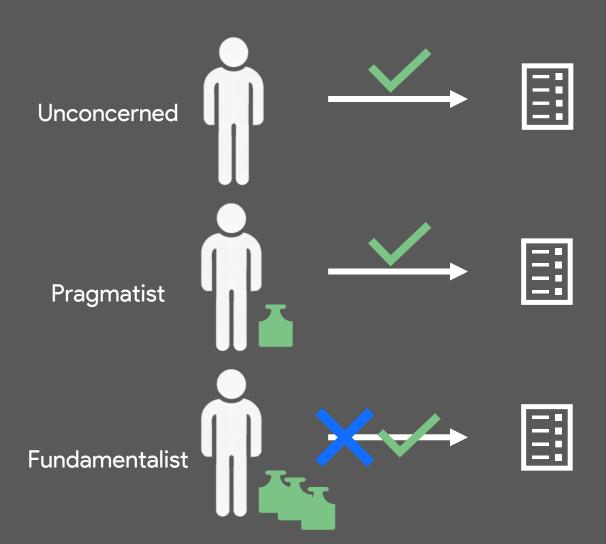
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

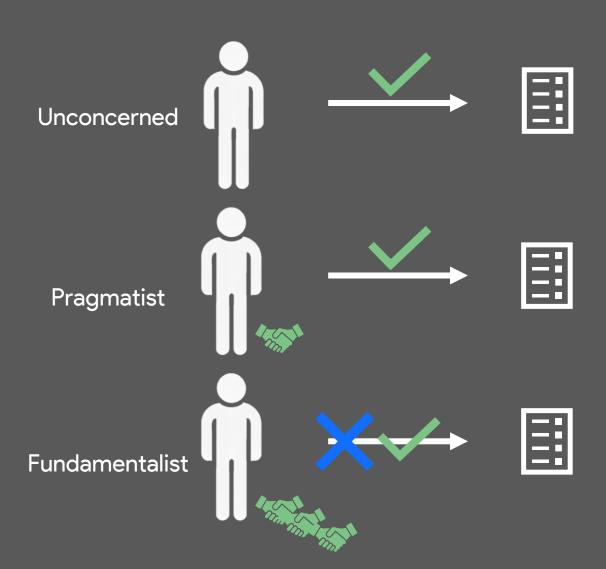
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

ivacy vs. Fairness

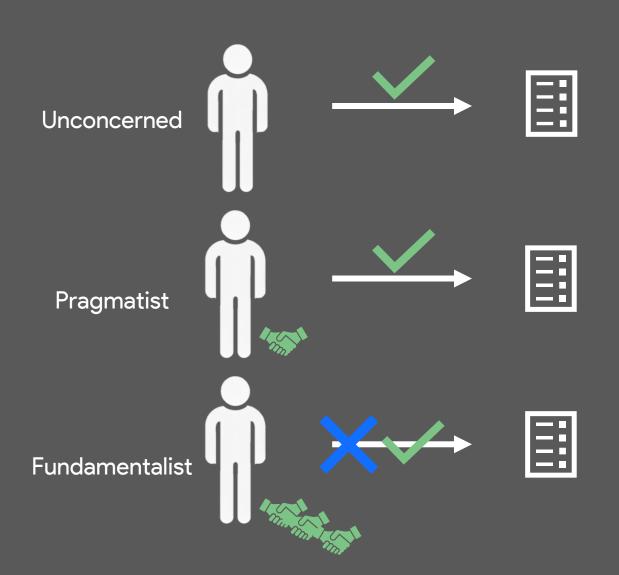
DP as a Tool

Individual DP

Results

Ingoing Research

Discussion



Limited research on "adequate" compensation [1]

Taylor, Humphrey. (2003). Most People Are "Privacy Pragmatists" Who, While Concerned about Privacy, Will Sometimes Trade It Off for Other Benefits. Ghosh, Arpita, and Aaron Roth. "Selling privacy at auction." Proceedings of the 12th ACM conference on Electronic commerce. 2011. [1] Taylor, David G., Donna F. Davis, and Ravi Jillapalli. "Privacy concern and online personalization: The moderating effects of information control and compensation." Electronic commerce research 9 (2009): 203-223.

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

- >>> Al systems should be equitable across all demographic groups [1]
 - "Nobody should suffer worse or accuracy in ML solely due to them belonging to a specific group"
- >>> Improving fairness to benefit one group should not hurt any other group [2, 3]
 - *Lowering predictive accuracy for one group because of the presence of another is also a fairness issue."
- Sensitive attributes are essential for many Al applications [4]

^[1] Yang, Y., Zhang, H., Gichoya, J.W. et al. The limits of fair medical imaging Al in real-world generalization. Nature Medicine (2024)

^[2] Ghassemi, M., Gusev, A. Limiting bias in Al models for improved and equitable cancer care. *Nature Reviews Cancer* (2024)

^[3] Suriyakumar, Vinith M., Marzyeh Ghassemi, and Berk Ustun. "When personalization harms: Reconsidering the use of group attributes in prediction." arXiv preprint arXiv:2206.02058 (2022)

^[4] Taylor S, Jaques N, Nosakhare E, Sano A, Picard R. Personalized Multitask Learning for Predicting Tomorrow's Mood, Stress, and Health. IEEE Trans Affect Comput. (2020)

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Privacy

Privacy in machine learning refers to the protection of individuals' sensitive data during the <u>training and deployment</u> of models, ensuring that personal information is not exposed or inferred from the model's outputs.

Fairness

Fairness in machine learning refers to the <u>design and deployment</u> of models that ensure <u>equitable treatment of all</u> <u>individuals</u> or groups, avoiding biases and discrimination in predictions or outcomes.

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Privacy

Identifier	Attr. 1	Attr. 2	Attr. 3	Sens. Attr.
0001	105	12	38	Black
0002	98	8	42	Blonde
0003	93	10	36	Red
0004	112	14	29	Blonde
0005	102	6	30	Brown
0006	96	11	31	Blonde

Identifier	Attr. 1	Attr. 2	Attr. 3	Sens. Atr.
0001	105	12	38	Black
0003	93	10	36	Red
0004	112	14	29	Blonde
0005	102	6	30	Brown
0006	96	11	31	Blonde

Fairness

Identifier	Attr. 1	Attr. 2	Attr. 3	Sens. Attr.
0001	105	12	38	Black
0002	98	8	42	Blonde
0003	93	10	36	Red
0004	112	14	29	Blonde
0005	102	6	30	Brown
0006	96	11	31	Blonde

Identifier	Attr. 1	Attr. 2	Attr. 3	Sens. Attr.
0001	105	12	38	
0002	98	8	42	
0003	93	10	36	
0004	112	14	29	
0005	102	6	30	
0006	96	11	31	

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Privacy

Fairness



- Privacy concerns the training data
- Privacy concerns a limited group of people
- Privacy is a data usage property
- Privacy requirement is a personal property (it can be compensated for)

- > Fairness concerns the output data
- > Fairness concerns an unlimited group of people
- > Fairness is a model property
- Fairness requirement is a societal property

Privacy

Fairness

Privacy

Differential Privacy

Privacy vs. Fairness

$$P(\theta(D_1) \in O) \leq e^{\epsilon} \cdot P(\theta(D_2) \in O) \text{ with } D_1 \cong D_2, \forall O$$

DP as a Tool

$$L_{D_1D_2}(O) = \ln\left(\frac{P(\theta(D_1) \in O)}{P(\theta(D_2) \in O)}\right) with D_1 \cong D_2, \forall O$$

Individual DP

Results

Ingoing Research

Discussion

Disparate Impact

$$\phi_{DI} = \frac{P(\theta(x) = y | g(x) = a)}{P(\theta(x) = y | g(x) = b)} \forall a, b$$

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Decision Making with Differential Privacy under a Fairness Lens

Cuong Tran¹, Ferdinando Fioretto¹, Pascal Van Hentenryck² and Zhiyan Yao^{3*}

¹Syracuse University

²Georgia Institute of Technology

³Nanjing University of Science and Technology
{cutran, ffiorett}@syr.edu, pvh@isye.gatech.edu, zyao09@syr.edu

Abstract

Many agencies release datasets and statistics about groups of individuals that are used as input to a number of critical decision processes. To conform with privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data. This paper studies the release of differentially private datasets and analyzes their impact on some critical resource allocation tasks under a fairness perspective. The paper shows that, when the decisions take as input differentially private data, the noise added to achieve privacy disproportionately impacts some groups over others. The paper analyzes the reasons for these disproportionate impacts and proposes guidelines

Although DP provides strong privacy guarantees, it may induce biases and fairness issues in downstream decision processes, as shown empirically in [Pujol et al., 2020]. Since at least \$675 billion are being allocated based on U.S. census data, the use of differential privacy without a proper understanding of these biases and fairness issues may adversely affect the health, well-being, and sense of belonging of many individuals. Indeed, the allotment of federal funds, apportionment of congressional seats, and distribution of vaccines should ideally be fair and unbiased. Similar issues arise in several other areas including election, energy, and food policies. The problem is further exacerbated by the recent recognition that commonly adopted DP mechanisms for data release may introduce unexpected biases on their own, independently of a downstream decision process [Zhu et al., 2021].

This paper builds on these observations and provides a step

DP introduces substantial bias in allotment problems due to the stronger perturbation of smaller values than larger values due to the noise addition

Privacy

Privacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Decision Making with Differential Privacy under a Fairness Lens

Cuong Tran¹, Ferdinando Fioretto¹, Pascal Van Hentenryck² and Zhiyan Yao^{3*} Syracuse University

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal

University of Waterloo, Canada sushant.agarwal@uwaterloo.ca

Abstract

The concerns of fairness, and privacy, in machine learning based systems have received a lot of attention in the research community recently, but have primarily been studied in isolation. In this work, we look at cases where we want to satisfy both these properties simultaneously, and find that it may be necessary to make trade-offs between them. We properties simultaneously, and analyse how they interact. We find that that these properties are at odds with each other, and it is necessary to make trade-offs between them. We show a theoretical result to demonstrate this, which talks about the clash between the requirements of differential privacy, accuracy, and fairness in learning algorithms. It is an impossibility theorem which states that even in a very simple binary classification setting, no learning algorithm that is ϵ -differentially private (for any $\epsilon < \infty$), and approximately fair (i.e., the

Theoretical proof, that pure DP and approximate fairness cannot achieve accuracy better than a constant classifier

Decision Making with Differential Privacy under a Fairness Lens

Cuong Tran¹, Ferdinando Fioretto¹, Pascal Van Hentenryck² and Zhiyan Yao^{3*}

Svracuse University

Trade-Offs between Fairness and Privacy in Machine Learning

Introduction

Privacy

Privacy vs. Fairne

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Sushant Agarwal

University of Waterloo, Canada

On the Privacy Risks of Algorithmic Fairness

Hongyan Chang and Reza Shokri

Department of Computer Science, National University of Singapore (NUS)

firstname@comp.nus.edu.sg

Abstract—Algorithmic fairness and privacy are essential pillars of trustworthy machine learning. Fair machine learning aims at minimizing discrimination against protected groups by, for example, imposing a constraint on models to equalize their behavior across different groups. This can subsequently in a disproportionate way. We study how this can change the influence of training data points on the fair model, information leakage of the model about its training data. We analyze the privacy risks of group fairness (e.g., equalized offerring whether a data point is used for training a model. We show that fairness comes at the cost of privacy, and this cost is not distributed equally: the information leakage

SGD [20]) impose a larger accuracy reduction on "underrepresented" subgroups [24]. In other words, privacy can come at the cost of fairness. In this paper, we ask the cost for achieving group fairness? We study if enforcing fairness constraints on the learning algorithm can impact One way to address this great reduction on "underted cost for achieving group fairness." In this paper, we ask the cost for achieving group fairness? We study if enforcing its privacy risk with respect to the training data.

One way to address this question is through analyzand fairness constraints [21, 25, 26], and evaluating the choose a complementary adversarial approach. We fortunate a reaches a complementary adversarial approach. We fortunate a reaches a complementary adversarial approach. We fortunate a reaches against machine learning models. This reflects the reaches are interested as a complementary adversarial approach.

Empirically show, that data of fairer models is more susceptible to MIA

Decision Making with Differential Privacy under a Fairness Lens

Cuong Tran¹, Ferdinando Fioretto¹, Pascal Van Hentenryck² and Zhiyan Yao^{3*}

Syracuse Universit

Introduction

Privacy

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal

University of Waterloo, Canada 1@uwaterloo.ca

On the Privacy Risks of Algorithmic Fairness

Department of Computer Science, National University of Singapore (NUS) Hongyan Chang and Reza Shokri

Abstract—Algorithmic fairness and privacy lars of trustworthy machine le

cha

in a infor

analy odds)

inferri

We sh

this cos

DP as a Tool

Privacy vs. Fairnes

Individual DP

Results

Ingoing Research

Discussion

Differentially Private Fair Learning

 ${\bf Mat thew\ Jagiels ki^{\ 1}\ \ Michael\ Kearns^{\ 2}\ \ Jieming\ Mao^{\ 2}\ \ Alina\ Oprea^{\ 1}\ \ Aaron\ Roth^{\ 2}\ \ Saeed\ Sharifi-Malvajerdi^{\ 2}}$

Abstract

Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. Our first algorithm is a private implementation of the equalized odds post-processing approach of (Hardt et al., 2016). This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of "disparate treatment". Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of (Agarwal et al., 2018) which is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.

regulations often restrict the use of "sensitive" or protected attributes in algorithmic decision-making. U.S. law prevents the use of race in the development or deployment of consumer lending or credit scoring models, and recent provisions in the E.U. General Data Protection Regulation (GDPR) restrict or prevent even the collection of racial data for consumers. These two developments — the demand for non-discriminatory algorithms and models on the one hand, and the restriction on the collection or use of protected attributes on the other — present technical conundrums, since the most straightforward methods for ensuring fairness generally require knowing or using the attribute being protected. It seems difficult to guarantee that a trained model is not discriminating against (say) a racial group if we cannot even identify members of that group in the data.

A recent line of work (Veale & Binns, 2017; Kilbertus et al., 2018) made these cogent observations, and proposed an interesting solution employing the cryptographic tool of secure multiparty computation (commonly abbreviated MPC). In this model, we imagine a commercial entity with access to consumer data that excludes race, but this entity would like to build a predictive model for, say, commer-

Empirically and theoretically show privacy-fairness-utility tradeoff for DP fairness postprocessing & DP oracle learner on tabular data

Decision Making with Differential Privacy under a Fairness Lens

Cuong Tran¹, Ferdinando Fioretto¹, Pascal Van Hentenryck² and Zhiyan Yao^{3*}

Syracuse University

Trade-Offs between Fairness and Privacy in Machine Learning

Introduction

Sushant Agarwal

University of Waterloo, Canada 1@uwaterloo.ca

Privacy

On the Privacy Risks of Algorithmic Fairness

Privacy vs. Fairnes

DP as a Tool

Individual DP

Department of Computer Science, National University of Singapore (NIIS) Hongyan Chang and Reza Shokri

Abstract—Algorithmic fairness and privacy lars of trustworthy machine le

Differentially Private Fair Learning

Rachel Cummings*

cha in a infor analy

Matthew Jagielski ¹ Michael Kearns ² Jieming Mao ² Alina Oprea ¹ Aaron Roth ² Saeed Sharifi-Malvajerdi ²

odds) inferri

We sh this cos

Abstract ich predictive models regulations often restrict the use of "sensitive" or protected attributes in algorithmic decision-making. U.S. law prevents the use of race in the development or deployment edit scoring models, and recent

Results

On the Compatibility of Privacy and Fairness

Ingoing Research

Varun Gupta* Dhamma Kimpara* Jamie Morgenstern* March 21, 2019

Discussion

Abstract

In this work, we investigate whether privacy and fairness can be simultaneously achieved by a single classifier in several different models. Some of the earliest work on fairness in algorithm design defined fairness as a guarantee of similar outputs for "similar" input data, a notion with tight technical connections to differential privacy. We study whether tensions exist between differential privacy and statistical notions of fairness, namely Equality of False Positives and Equality of False Negatives (EFP/EFN). We show that even under full distributional access, there are cases where the constraint of differential privacy precludes exact EFP/EFN. We then turn to ask whether one can learn a differentially private classifier

group membership may be used at tes conclude with a brief experimental evaluation.

Theoretical proof, that pure DP and exact fairness cannot achieve accuracy better than a constant classifier

Privacy

vacy vs. Fairness

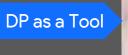
DP as a Tool

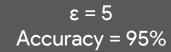
Individual DP

Results

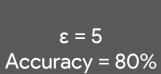
Ongoing Research

Individual DP





$$\epsilon = 5$$
 Accuracy = 93%



Ingoing Research

Privacy

vacy vs. Fairness

Individual DP

Results

Ingoing Research

Discussion

$$\epsilon = 5$$
 Accuracy = 95%

$$\epsilon = 5$$
 Accuracy = 93%

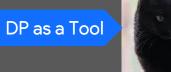
 $\epsilon = 5$ Accuracy = 80%

Due to:

Higher variance in data

Privacy

vacy vs. Fairness



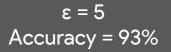
Individual DP

Results

 $\epsilon = 5$ Accuracy = 95%

Ingoing Research

Discussion



 $\epsilon = 5$ Accuracy = 80%

Due to:

- > Higher variance in data
- > Poor data quality

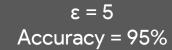
Privacy

vacy vs. Fairness

Individual DP

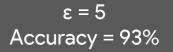
Results

DP as a Tool



Ingoing Research

Discussion



$$\epsilon = 5$$
 Accuracy = 80%

Due to:

- > Higher variance in data
- > Poor data quality
- > Lack of data

Individual DP

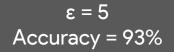
Results

DP as a Tool

ε = 5 Accuracy = 95%

Ingoing Research

Discussion



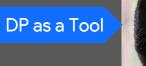
$$\epsilon = 5$$
 Accuracy = 80%

Due to:

- Higher variance in data
- Poor data quality
- >Lack of data
- > Unknown reasons

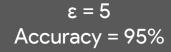
Privacy

vacy vs. Fairness



Individual DP

Results



Ingoing Research

$$\varepsilon = 5$$
 Accuracy = 93%

$$\epsilon = 5$$
 Accuracy = 80%

- Tune Privacy Budget w.r.t target accuracy ε = 8

 Accuracy = 92%
- Compensate for Additional Privacy Loss

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Individual Differentially Private SGD

Accounting

Individual Odometer

Individual Filters

Dropping data that exceeds the privacy budget

Assignment

Individual sensitivity (clipping bounds)

Individual sampling rates

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Individual Differentially Private SGD

Accounting

Individual Odometer

Individual Filters

Dropping data that exceeds the privacy budget

Suffers from catastrophic forgetting
Usually drops most important data first

Assignment

Individual sensitivity (clipping bounds)

Individual sampling rates

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research

Discussion

Individual Differentially Private SGD

Accounting

Individual Odometer

Individual Filters

Dropping data that exceeds the privacy

budget

Suffers from catastrophic forgetting Usually drops most important data first Assignment

Individual sensitivity (clipping bounds)

Individual sampling rates

Sampling rates outperform clipping

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Find
$$q_p$$
 such that $\epsilon_p \leq I \cdot 2q_p^2 \frac{\alpha}{\sigma_{sample}}$

Ensures, that the privacy budget is spent after *I* iterations

With
$$q_p$$
 such that $\frac{1}{N}\sum_{p=1}^P |G_p|q_p = q = \frac{B}{N}$ Desired batch size

Sum over expected number of samples per group

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Discussion

Finding q_p

Require: Per-group target privacy budgets $\{\epsilon_1, ..., \epsilon_p\}$, target δ , Iterations I, number of total data points N, per-privacy group number of data points $\{|G_1|, ..., |G_p|\}$.

Init
$$\sigma_{sample}$$
: $\sigma_{sample} \leftarrow getNoise(\epsilon_1, \delta, q, I)$
Init $\{q_1, ..., q_p\}$ where for $p \in [P]$
 $q_p \leftarrow getSampleRate(\epsilon_p, \delta, \sigma_{sample}, I)$

While
$$q \not\approx \frac{1}{N} \sum_{p=1}^{P} |G_p| q_p$$
:
$$\sigma_{sample} \leftarrow s_i \sigma_{sample} \text{ with } s_i < 1$$

$$q_p \leftarrow getSampleRate(\epsilon_p, \delta, \sigma_{sample}, I) \ \forall \ p \in [P]$$
Output: $\sigma_{sample}, \{q_1, \dots, q_p\}$

Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

ivacy vs. Fairness

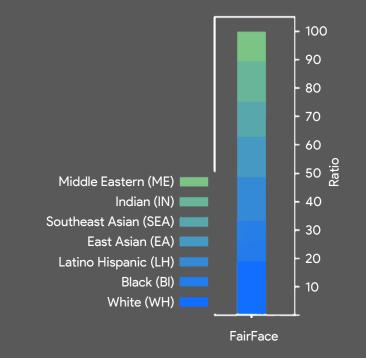
DP as a Tool

Individual DP

Results

FairFace

- > Type: Facial Images
- Attributes: Gender, Age, Ethnicity labels (Not self-reported)
 Balanced w.r.t. Ethnicity
- > Classification Target: Gender
- > Sensitive Attribute: Ethnicity



Ingoing Research

Privacy

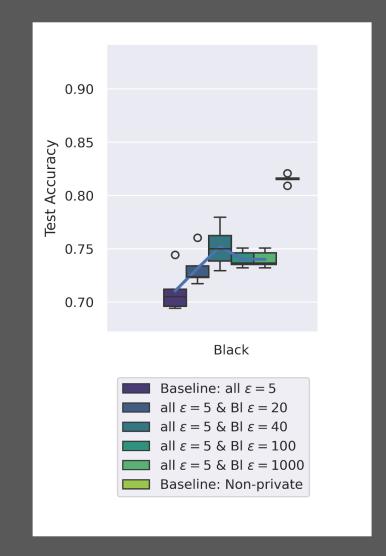
vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

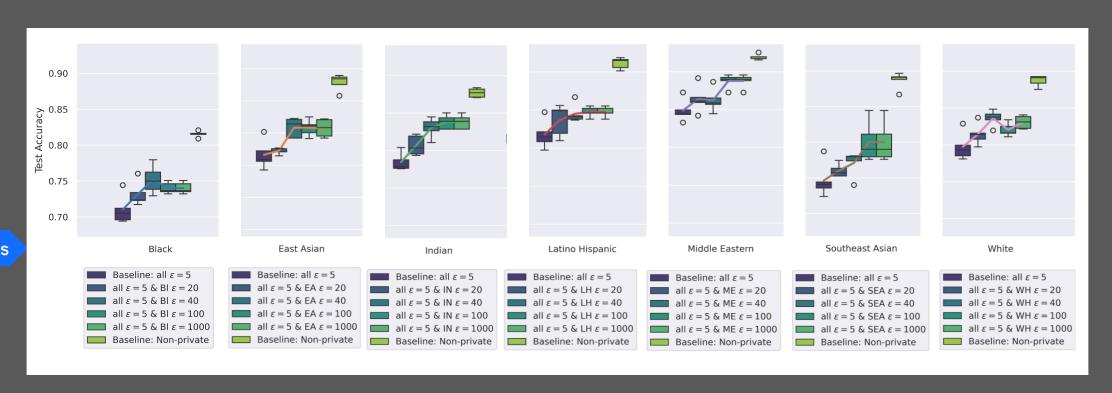
ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

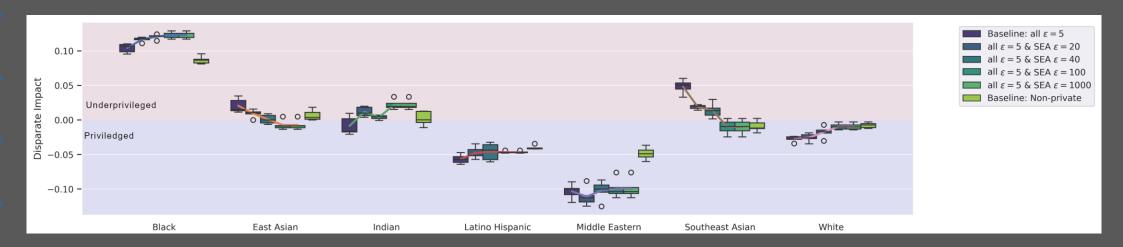


Privacy

vacy vs. Fairness

DP as a Tool

Individual DP



Results

Ingoing Research

Privacy

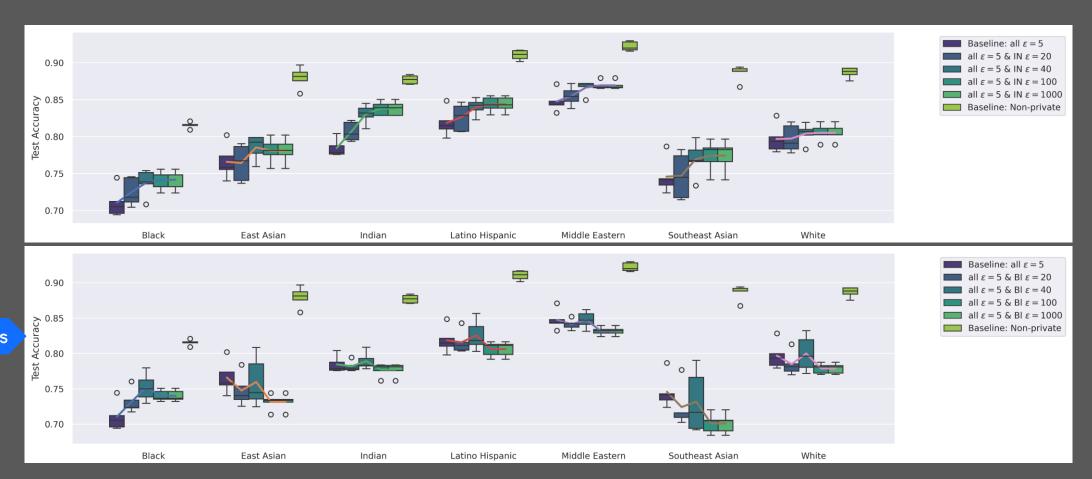
vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ingoing Research



Privacy

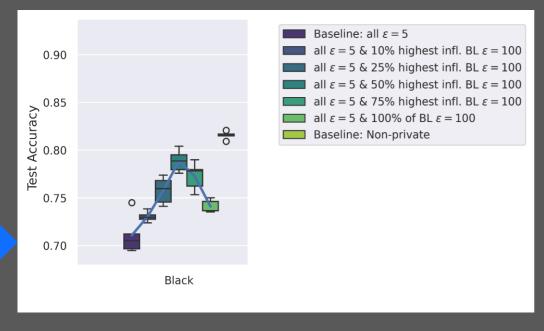
vacy vs. Fairness

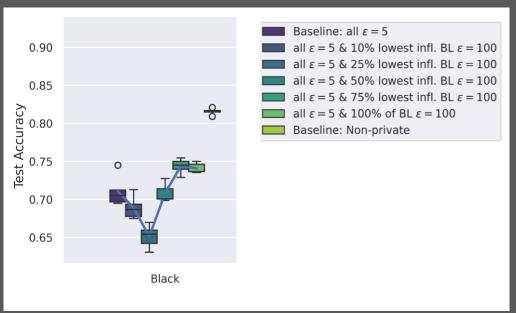
DP as a Tool

Individual DP

Results

Ingoing Research





Privacy

ivacy vs. Fairness

DP as a Tool

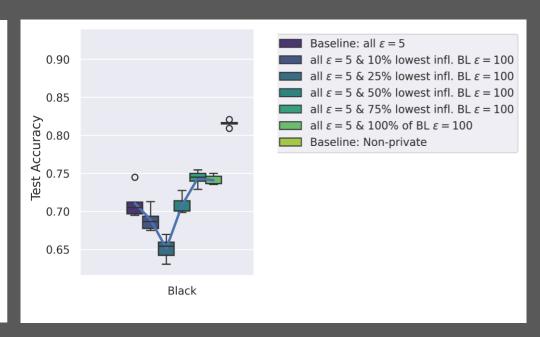
Individual DP

Results

Ingoing Research

Baseline: all $\varepsilon = 5$ all $\varepsilon = 5$ & 10% highest infl. BL $\varepsilon = 100$ all $\varepsilon = 5$ & 25% highest infl. BL $\varepsilon = 100$ all $\varepsilon = 5$ & 50% highest infl. BL $\varepsilon = 100$ all $\varepsilon = 5$ & 75% highest infl. BL $\varepsilon = 100$ all $\varepsilon = 5$ & 100% of BL $\varepsilon = 100$ Baseline: Non-private

Free Lunch:
Higher Accuracy,
Less overall privacy loss



Privacy

vacy vs. Fairness

DP as a Tool

Individual DP

Results

Ongoing Research

Privacy

ivacy vs. Fairness

DP as a Tool

Individual DP

Results

Investigate the effect of the intervention on groups of:

- Higher variance in data
- Poor data quality
- Lack of data

Problems:

- Finding a setting where these have a substantial effect
- Finding a setting that allows to compare the intervention on a dataset with the three different corruptions

Problems:

- There is no good group correlation metric
- Averaging sample-wise cross-influence metrics yield "group-influences" magnitues smaller (i.e., close to zero)

Predicting the inter-group correlative behaviour

Ongoing Research

Discussion

Increasing group-specific privacy budget increases their theoretical upper bound on the risk However, for many contributors, the true risk may be far smaller Evaluate the change in risk using MIA

Problems:

None ©

Thank you!

Got further questions? Let's connect: johannes.kaiser@tum.de